您当前所在位置:首页历史论文模态分析论文(模态分析结论)

模态分析论文(模态分析结论)

发布时间:2023-04-03 07:00:07编辑:小编归类:历史论文

1. 模态分析结论

逻辑通常指人们思考问题,从某些已知条件出发推出合理的结论的规律.说某人逻辑性强,就是说他善于推理,能够得出正确的结论.说某人说话不合逻辑,就是说他的推理不正确,得出了错误的结论.逻辑有时也指逻辑学.逻辑学是研究推理规律的理论.逻辑学分古典逻辑和现代逻辑.逻辑又有演绎逻辑,归纳逻辑,形式逻辑,非形式逻辑等不同类型.逻辑推理中的已知条件和结论都是可以判断真假的命题.如果把命题作为最基本的成分,只研究命题推理的规律,就得到命题逻辑.进一步,把命题再细分为谓词,量词就得到谓词逻辑.用符号表示命题,谓词,量词,得到符号逻辑.符号逻辑常用来研究数学中的推理,因此也叫数理逻辑.二十世纪,数理逻辑发展迅速,它的四个主要分支:集合论,模型论,递归论,证明论已成为数学的重要学科.现代逻辑如模态逻辑,时态逻辑,概率逻辑,量子逻辑,模糊逻辑等各式各样的应用逻辑层出不穷.这样一来,逻辑的含义是太丰富了.逻辑已经成为数学,哲学,计算机科学,甚至每一门学科的基础.逻辑表述

2. 模态分析的基本理论

简单地说,模态分析是一种处理过程,是根据结构的固有特性,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。

3. 模态分析的基本原理

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:   (1)动态数据的采集及频响函数或脉冲响应函数分析   1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。   2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。   3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。   (2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。   (3)参数识别按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型,激励方式不同(SISO、SIMO、MIMO),相应的参数识别方法也不尽相同。并非越复杂的方法识别的结果越可靠。 对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。   (4)振形动画参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。由于结构复杂,由许多自由度组成的振形也相当复杂,必须采用动画的方法,将放大了的振形叠加到原始的几何形状上。   以上四个步骤是模态试验及分析的主要过程。而支持这个过程的除了激振拾振装置、双通道FFT分析仪、台式或便携式计算机等硬件外,还要有一个完善的模态分析软件包。通用的模态分析软件包必须适合各种结构物的几何物征,设置多种坐标系,划分多个子结构,具有多种拟合方法,并能将结构的模态振动在屏幕上三维实时动画显示。

4. 模态分析结论是什么

模态分析就求特征值和特征向量的问题,特征值就是要知道结构振动的一些基本振型对应的频率,在实际中,有时为了避开这这些基本频率,防止共振,有时要加强振动,看实际需要,基本自然频率可以给我们一个准则,可知道我们的结构变形是算快还是算慢,基本自然频率也可以代表结构整体的刚度:频率低表示结构的刚度很低(结构很柔软),相反的频率高表示结构的刚度很高(结构很坚硬)。结构的软硬程度视需求而有不同的设计,譬如刚性的高楼设计虽然比较不会摇动的太厉害,但是却不容易吸收地震能量;相反的柔性的高楼设计虽然会摇动比较大,但是往往可以吸收很大的地震能量。 振型有何实用上的价值呢?从振态的形状我们可以知道在某个自然共振频率下,结构的变形趋势。若要加强结构的刚性,你可以从这些较弱的部分来加强。比如说一个高楼的设计,如果经过模态分析后会发现,最低频的振态是在整个高楼的扭转方向,那表示这个方向的刚度是首先需加强的部分。

5. 模态分析的作用是什么

任何结构都可以看做多个质点和弹簧所组成的系统,这就是模态分析的基础物理模型。

由于有多个弹簧存在,所以会有多个固有频率,决定固有频率的,是质点的质量m和弹簧的弹性系数k,通过直接求解多自由度系统的运动微分方程知道,自由状态下的固有频率与k有关,但不是线性关系。由此可知,固有频率与在哪一点激励无关,爱敲哪儿敲哪儿。(但约束条件要一致)

至于模态,则指的是模态振型、模态质量、模态刚度、模态阻尼,这是在利用坐标变换对线性微分方程组解耦时引入的名词,是音译,与中文字面的意思没多大关系。呵呵,有时候常常被这个名字给误导了。

求的固有频率后,会解出一组振型向量(就是各点的振动位移),即:对应于每一个固有频率的各点的振型之比;所以,当系统受外加激励时,就可以列出一组运动方程,但这组方程在物理坐标下无法求解,所以高人们把它转换成另一个更方便的坐标系:根据能量守恒,外力做功等于各点的动能和势能和,根据各阶振型的正交性,可以将各点的振动位移变换成各阶振型与贡献量乘积之和,这样使方程组得以解耦,这个新的位移表示方法,就称为模态坐标。(老外起的名字,不太靠谱)

接下来就是求解了,结果是,通过一系列巧妙的运算方法(其实都是线性代数的知识),得出来一组好看的方程,这组方程跟物理坐标下的方程一样,只不过坐标系不同而已,在这组方程里,质量、刚度、阻尼的矩阵都是漂亮的对角阵,而频响函数矩阵的各个元素,也很好的表达了系统中各质点的导纳关系。

很显然,各点之间的导纳不同,所以,不同点之间的激励和响应是不一样的,即振型不同。所以你在不同的点激励,振型也是不同的。

自由状态下,给个冲击,系统会共振,但是如果你持续的给系统激励,系统是受迫振动。

6. 模态分析的结果

模态是机械结构的固有振动特性,指结构在各频率下的动态响应,一个系统的动态响应是其若干阶模态振型的综合。

对于一般的多自由度系统来说,运动都可以由其振动的模态来合成,有限元的模态分析就是建立模型模态进行数值分析的过程。

7. 模态分析概述

模态分析是研究结构动力特性一种方法,一般应用在工程振动领域。其中,模态是指机械结构的固有振动特性,每一个模态都有特定的固有频率、阻尼比和模态振型。分析这些模态参数的过程称为模态分析。按计算方法,模态分析可分为计算模态分析和试验模态分析。

由有限元计算的方法取得——计算模态分析;每一阶次对应一个模态,每个阶次都有自己特定的频率、阻尼、模态参数。

际蓝论文网版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

美食评论文(美食评论文案20字)